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Abstract 

The paper concerns the application of Genetic Algorithms and Genetic 
Programming to complex tasks such as automated design of control systems, 
where the space of solutions is non-trivial and may contain discontinuities. 
Several adaptive mechanisms for control of the search algorithm's parameters 
are proposed, investigated and compared to each other. It is shown that the 
proposed mechanisms are useful in preventing the search from getting trapped in 
local extremes of the fitness landscape. 

 
Introduction 
 
Genetic Algorithms represent a well-known optimization method recognized in particular for 
its flexibility in representation of solutions. Genetic Programming applies the theory of Genetic 
Algorithms to evolving computer programs, usually represented by syntactic trees. 
There is a multitude of research papers that aim to improve convergence and robustness of both 
algorithms. Some of these concentrate on parameter control, that is to say on setting and 
modifying various parameters of the search algorithm. 
This paper proposes several adaptive mechanisms, which aim to decrease the probability that 
the search will become trapped in local maxima by various techniques. They are all based on 
detecting that the search has become trapped by observing how average fitness of the 
population changes in time. 
 
Genetic Algorithms 
 
Genetic algorithms represent one of the several computational techniques based on simulation 
of evolution, a process based on the principle of natural selection, that is, on the survival of the 
fittest. The genetic algorithm operates on a population of individuals. The individuals represent 
various solutions of a specific problem. The main principle of the algorithm is as shown in 
figure 1. 

                                                      
* Prof. Ing. Juraj Spalek, PhD. – Department of Control and Information Systems, Faculty 
of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic, 
juraj.spalek@fel.uniza.sk 
** Bc. Michal Gregor – Department of Control and Information Systems, Faculty of Electrical 
Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,  
o.m.gregor@gmail.com 



 39 

The first step is to generate the initial population – this typically involves generating a group of 
random individuals. The next step is to perform evaluation of those individuals, which enables 
the algorithm to compare the individuals to each other and, furthermore, to introduce the 
survival of the fittest: the individuals with the best scores (also known as fitness in the GA 
terminology) are the most likely**  to participate in reproduction, that is, in forming the next 
generation. This is analogous to the natural selection process, in which the fitter individuals 
have greater chance to survive and reproduce. 

Generation of 
the initial 

population

Evaluation of 
the individuals Selection

Reproduction

Stopping the evolution 
in case the defined 
conditions are met

CrossoverMutation

 
Fig. 3. The general principle of genetic algorithms 

 
Figure 1 also shows that the process of forming the next generation typically involves two 
main genetic operators – crossover and mutation. Mutation represents a random modification 
of the genetic code of a single individual. 
In crossover, however, several (usually two) individuals exchange parts of their genome. 
Therefore, if we choose mostly the highly fit individuals for reproduction, crossover provides a 
mechanism which may produce an offspring that combines their good properties (and thus 
achieves greater fitness that any of the parents). 
The process of evolution runs iteratively until certain conditions are met (like achieving a 
predefined level of (maximum or average) fitness, or reaching the maximum number of 
generations††). 
The individual phases will not be covered in detail here, see [1], [2], or [3]. However, the next 
section will present some information concerning fitness scaling as this concept will be utilized 
in the following sections. 
 
Fitness Scaling 
 
There is a well known problem associated with the fitness-proportionate selection methods. As 
[3] says, when the evolution starts, the fitness variance in population is usually high and a 
small number of individuals are much fitter than the others. Those individuals are consequently 

                                                      
** However, we usually refrain from directly choosing the best n individuals as that tends to 
reduce diversity, which leads to premature convergence and to getting trapped in a local 
extreme. 
†† The latter is usually monitored in every implementation so as to prevent an infinite loop in 
case the algorithm does not converge. 
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much more likely to be selected than any of the others and so their offspring quickly multiplies, 
which leads to premature convergence and non-optimal results. 
On the other hand, later in the search, when all individuals are very similar and the fitness 
variance is therefore low, the evolution becomes extremely slow as there are virtually no 
fitness differences to explore. 
To address these problems a fitness scaling function can be applied – that is, the original fitness 
function f  will be wrapped into a scaling function 

sf : 

FFf s →: . (7) 

The scaling function wraps the original fitness function and the selection algorithm uses the 
scaled values: 

( )( )xff=fitness Scaled s
, (8) 

where Ix∈  represents an individual. 
There are several widely used types of fitness scaling functions – [4] lists 3 basic categories: 

1. linear, 

2. sigma truncation, 

3. power law. 
 
Linear Scaling 
 
A fitness function with linear scaling then has the following definition [4]: 

( ) ( )xfb+a=xf linear . , (9) 

where ( )xf  is the raw fitness and a , b  are user-defined constants – article [4] experiments 

with ( ){ }xfmax=a  and ( ){ } Nxfmin=b /− , where N  is the number of individuals. In [5] 

author presents a way to derive relationships for a , b , which provide linear scaling that 
preserves the average fitness. 
 
Sigma Truncation Scaling 
 
For a fitness function with sigma truncation scaling, source [6] provides the following 
definition: 

( ) ( )
f

f
sigma � �xf

+=xf
−

1 , 
(10) 

where 
f

�  and 
f

�  are the mean fitness and the standard deviation – respectively – of fitness for 

the current generation. 
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Power Law Scaling 
 
Source [5] provides the following definition of fitness function scaled using the power law 
scaling: 

( ) ( )k
power xf=xf , (11) 

where k  is a problem-dependent exponent that may require to be changed during the run. [5] 
also states that a value of 1.005=k  has been successfully used in machine-vision applications. 
 
Boltzmann Scaling 
 
There are also several special scaling methods, such as the Boltzmann scaling [6], definition of 
which is as follows: 

( ) ( )( )
( )( )[ ]Txfmean

Txf
=xfBoltzmann /exp

/exp , (12) 

where T  represents a temperature parameter, which gradually reduces over time (with an 
increasing number of generations). 
 
Scaling the Fitness Function to Satisfy the Requirements 
 
Certain selection methods also impose requirements on the range of the fitness function, the 
most obvious example being the fitness roulette selection, where fitness values must be greater 
than or equal to zero (see (11)). The most apparent way to achieve this is to use the following 
scaling, which could be considered a special case of linear scaling: 

( ) ( ) ( ){ } ( ){ }
( ) ( ){ }





≥

−

0

0

xfminxf

<xfminxfminxf=xfs

  

(13) 

The minimum can be evaluated over the current generation, or over the current and n  previous 
generations in which case the subtraction of the minimum is referred to as fitness windowing 
[7]. 
 
Adaptive Genetic Algorithms 
 
In some applications based on the theory of genetic algorithms, the optimization task may be so 
difficult – with a complex space including a great number of local optima in which the search 
process can be get trapped – that additional techniques may be required to find the global 
optimum. Genetic programming presented in the next section does in a multitude of tasks serve 
as an especially good example of the problem, as it evolves computer programs and it is 
obvious that two very similar computer programs may produce drastically different results and 
thus the space of solutions is highly complex.. 
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Among the approaches that aim to prevent getting trapped in a local optimum are the adaptive 
schemes that observe various parameters of the algorithm or the search process itself and using 
the observed values adapt some of the parameters. The approaches to parameter setting can 
basically be divided into the following categories [8], [9]: 

4. static parameter control, 

5. dynamic parameter control, 

6. adaptive parameter control, 

7. self-adaptive parameter control. 

 
Static Parameter Control 
 
The common feature of approaches falling into this category is that the setting they provide 
remains constant for the entire duration of the evolutionary process. There are many works 
analysing the problem of finding optimum settings for parameters like mutation probability and 
crossover probability. Some of these are listed in [8], e.g. the work of Mühlenbeinm which 
proposes the following formula for the mutation probability: 

L=pm /1 , (14) 

where L  is the length of the bit string. 
 
Dynamic Parameter Control 
 
As stated in [9] dynamic parameter approaches typically prescribe a deterministically 
decreasing schedule over a number of generations and provides a formula for mutation 
probability derived by Fogarty: 

( )
tm +=tp

2
0.11375

240
1 , (15) 

where t  is the generation counter. 
Papers [8] and [9] both refer to a more general expression derived by Hesser and Männer: 

( )
L

� �
t��=tpm








 −

× 2
exp

, (16) 

where � , � , � are constants, �  is the population size and t  is the generation counter and L  is 

again the length of the bit string. 
 
Adaptive Parameter Control 
 
Adaptive parameter control techniques monitor the search process itself and provide feedback. 
Some examples can be found in [10], which starts with a simple expression for the mutation 
and crossover probabilities. Crossover probability is expressed as follows: 
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ff

k
=p

max
c −

1 , (17) 

where 
1k  is a constant and 

maxf , f  are the current generation maximum and average fitness 

values respectively. 
A similar formula is proposed for mutation probability: 

ff

k
=p

max
m −

2 , (18) 

where 
2k  is a constant. 

It is further concluded in [10] that these expression do not depend on the fitness value of any 
particular solution, which means that the crossover and mutation probabilities will be the same 
for both – individuals with low and high fitness values. Another version of these formulas is 
derived that reflects these concerns [10]: 













≤

−
−

ff'k

f>f'
ff

f'f
k=p

max

max
c

3

1

 

(19) 













≤

−
−

ffk

f>f
ff

ff
k=p

max

max
m

4

2

 

(20) 

where f  is the fitness value of the individual to be mutated, f'  is the larger of the fitness 

values of the individuals to be crossed and 
3k  and 4k  are constants. It is required that 

1k  and 

2k be less than 1.0 in order to constrain cp  and 
mp  to the range of 0,1 . The ff'k=pc ≤3

 

and ffk=pm ≤4
 expressions are to prevent crossover and mutation probabilities from 

exceeding 1.0 for suboptimal solutions. 

Authors of [10] also observe that cp  and mp  are zero for the solution with maximum fitness 

and that 1k=pc
 for f=f' , while 2k=pm  for f=f . For further details and for information 

concerning setting the values of the constants refer to [10]. Some discussion concerning this 
approach is also provided in section 0. 
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Self-adaptive Parameter Control 
 
When using the self-adaptive parameter control approach, parameters such as mutation rate and 
crossover probability of each individual are part of its genome and are evolved with it. As 
stated in [9], the idea behind this is that a good parameter value will provide an evolutionary 
advantage to the individual. For further reference see [8] or [9]. 
 
Genetic Programming 
 
Genetic programming (GP) is a technique introduced by John Koza (see Genetic 
Programming: On the Programming of Computers by Means of Natural Selection [11]). It 
utilizes the previously outlined concepts to evolve computer programs. The main idea of 
Genetic Programming revolves around the way in which the individuals are represented, that is 
to say around the syntactic trees (also known as parse trees). The problem will be analysed 
more specifically in the following sections. 
 
Representation 
 
It is obvious, that simple text-based representation of a programme is not especially suitable for 
genetic algorithms as using a naïve implementation of crossover and mutation over the text-
based code would lead to syntactically incorrect programs. 
The solution proposed by John Koza is to represent a program using a parse tree (see Fig. 2 and 
3 for an instance), which is analogous to LISP S-expressions [1]. The syntactic tree is a graph 
with two types of nodes – non-terminals, which represent functions, and terminals, which 
represent variables and constants. 
Figures 2 and 3 show examples of such trees with Fig. 2 displaying a tree that codes the 
expression x+x.y ln  and Fig. 3 displaying a tree with more general mechanisms like 

conditional execution, assignment and return. 

x y

* ln

x

+

 

Fig. 4. A simple example of a syntactic tree 

 
The program in Fig. 3 shows one of the possible ways to return values. The root node called 
PRG (the name is taken over from [1], where a PRG functor is used to express that several 
void-returning functors are called in a sequence) is a functor with an arbitrary number of inputs 
of type void, while the last input is of a pre-set type, which is identical to the return type of the 
program. That way after all processing is done by the void input subtrees, the result can be 
collected using the last input and returned. 
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Fig. 5 A more complex parse tree 

The program from figure 3 can be rewritten into the following C++ code (Listing 1): 

Listing 1 Code expressed by Fig. 3 

1. if(x > y) ret = x; 
2. else ret = y; 
3. return ret; 

 
The representation proposed by Koza has one important property, known as the closure 
property, which requires that any valid tree generated from a set of terminals: 

{ }nt,tt=T ...2,1,
, (21) 

and a set of non-terminals: 

{ }mt,tt=NT ...2,1,
, (22) 

represents a valid program, which states that any non-terminal should be able to handle as an 
argument any data type and value returned from a terminal of non-terminal [12]. 
In contrast to this approach, several researches focus on the so-called strongly typed genetic 
programming [12], where nodes are allowed to have different incompatible return and 
argument types. In this case, type constraints have to be enforced, which introduces several 
fundamental differences. The most notable aspect is that when generating, crossing or mutating 
a tree care has to be taken to ensure that the return type of the node used as an input is 
compatible with the data type of the input itself. 
The closure property can still be enforced in strongly typed genetic programming using 
dynamic typing. Non-terminals can be built so that they accept an argument of any type, but 
throw an exception if type id of the argument is not as expected. 
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The Artificial Ant Problem 
 
The artificial ant problem described by John Koza in [11] is essentially a trail-following task. 
The actor – an artificial ant – is supposed to navigate in an environment following an irregular 
path consisting of pieces of food which it collects. The ant has very limited sensing capabilities 
– it only sees a single tile right in front of it. John Koza successfully solves the problem by 
applying Genetic Programming‡‡. 
This constraint, although a reasonable one – with many line-following agents this is in fact the 
case – makes the task of navigating along a non-trivial path rather difficult. It seems that even a 
human is generally unable to navigate the ant correctly when only seeing a single tile in front 
of the actor although this has not been tested on a wide range of subjects. 
Concerning the application of GP to the problem, Koza uses the following set of terminals 
[11]: 

{ }LEFTRIGHT,MOVE,=T , (23) 

and the following non-terminals: 

{ }PROGN3PROGN2,AHEAD,-FOOD-IF=F . (24) 

The meaning of most of these is straight-forward – MOVE moves the actor forward by a single 
step, RIGHT and LEFT turn the actor in the respective directions. IF-FOOD-AHEAD is  
a functor with two arguments – the first is the then part and is executed if there is a piece of 
food in front of the actor, while the other is the else part. PROGN2 and PROGN3 are functors 
with 2 and 3 arguments respectively. PROGN represents a sequence of steps to be executed 
unconditionally, that is, PROGN2 and PROGN3 both execute each of its sub-trees. 
 

 
Fig. 6. The Santa Fe trail 

                                                      
‡‡ See [11] for detailed information about the solution. 
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The evaluation is based on simulation and the fitness is equal to the amount of food collected 
by the actor. It would normally be necessary to run several simulations for every individual to 
make sure that the solution works in general and not only on the single path on which it was 
tested. To avoid this Koza uses a trail known as the Santa Fe trail§§ (Fig. 4), which is presumed 
to be sufficiently representative of the general trail following problem [11]. 
 
Mode of Execution and Operators Used 
 
It is also necessary to mention the mode of execution used by Koza – the program generated by 
the evolutionary search is executed as fully as possible and then re-executed [11]. Both [11] 
and [1] limit the number of steps that a solution is allowed to perform to 400 so as to prevent 
running indefinitely for unfit individuals. The population size is set to 500 individuals and the 
maximum number of generations to 50 for both [11] and [1]. 
In our work we have set some additional requirements concerning the form of the solution – 
the evolved controller should, when executed, return the action that the ant is to execute next 
instead of calling functors that directly execute the action and wait for its completion. The set 
of terminals contains persistent variables and the controller has access to a pre-set number of 
its previous inputs and outputs. 
Controllers based on such mode of execution seem to be much more difficult to evolve than 
those originally proposed by Koza. The search usually gets trapped in a local maximum from 
which it is often unable escape. 
Let us provide the reader with some brief information concerning the terminals and non-
terminals used in our work. The following components were utilized: 

1. VariableFunctor<NavAction> – a terminal that acts as a variable of type NavAction 
(NavAction is an enumerated type representing the action that an actor can take like 
stay, forward, turn around, turn left, turn right). 

2. ConstFactory<NavAction> – a factory that creates constant terminals of type 
NavAction. 

3. ConstFactory<TileType> – a factory that creates constant terminals of type TileType 
(an enumerated type that represents various types of tiles in the map). 

4. ConstFunctor<void> and NumericConstFactory<bool> – auxiliary terminals of type 
void and bool. 

5. IfAssign – a non-terminal with 5 sub-nodes; the first is of type bool and expresses the 
condition. If the condition is true, value from sub-node 3 is assigned to variable from 
sub-node 2; if false value from sub-node 5 is assigned to variable from sub-node 4. 
Values and variables are of type NavAction. 

6. CompareFunctor<NavAction> and CompareFunctor<TileType> – non-terminals that 
returns true if both of their inputs are equal and false if not. 

7. Logic functors: And, Or, Not. 

8. PrgReturnFunctor(NavAction, N) – a non-terminal used primarily as root functor of 
the tree – it has N sub-nodes returning void and one sub-node (the last one) returning 
NavAction. All sub-nodes are executed one by one and the return value of the last one 
is returned by the PrgReturnFunctor. 

 

                                                      
§§ It contains single gaps, double gaps, single, double and triple gaps at corners [11], etc. 
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Adaptive Value-switching of Mutation Rate 
 
Motivation 
 
Most of the existing parameter setting mechanisms, as presented in the previous section, either 
focus on setting GA-specific parameters such as length of the bit string (e.g. rule (8)), or are 
not adaptive (e.g. (8), (9) and (10)). The AGA adaptive mechanism described in [10] (formulas 
(13) and (14)) seems more fit to the task because it implements certain form of convergence 
detection based on comparison of the maximum and average fitness values. However this 
approach does little to solve the problem of getting trapped in a local optimum as the method 
does not discern between local and global optima. 
Furthermore – as mentioned hereinbefore – equations (13) and (14) assign the best individual 
zero crossover and mutation probabilities, while assigning high probabilities to less fit 
individuals. The reasoning behind this is that the less fit individuals can safely be disrupted by 
high mutation rates and recombined by crossover (thus employing the solutions with sub-
average fitness to search the space [10]), while the highly fit individuals should be preserved. 
However, such approach has a very obvious downside which the authors do not seem to 
address – the highly fit individuals obviously contain the most excellent genetic material 
available and by disallowing mutation and crossover for these individuals the genetic code they 
carry becomes isolated and is not used to generate new solutions. 
 
Description of the AVSMR Mechanism 
 
The idea that the most fit solutions should survive crossover and mutation unmodified is valid, 
yet that feature can be enforced by using elitism*** . Keeping that in mind we propose  
a different adaptation scheme – called AVSMR (Adaptive Value-switching of Mutation Rate)  
- in order to address the other issues. The main idea is that the mutation probability should be 
increased to a high value when the search has become trapped in an extreme so as to provide 
the search process with new genetic material some of which may previously have been 
unavailable. To determine whether the search has become trapped the adaptive mechanism 
observes the change of average fitness in time. 
To describe the solution in more detail – the algorithm works with 2 values of mutation 
probability – the normal value and the high value. The algorithm switches from the normal 
value to the high value once the trigger criterion activates. 
The trigger criterion itself is based on a measure that we will herein term a delta sum: 

i

ii
ii

f

ff
+

�
S�=

�
S 1

1. −
−

− , (25) 

where 
i

�
S  is the delta sum in generation i  and 

if  is the average fitness in generation i and �  

is the feedback coefficient (the experiments have been carried out for 0.4=� ). 
If the delta sum is lower than a pre-set value for a predefined number of generations, that is to 
say the increase of average fitness in the last few generations is low, indicating that the search 

                                                      
*** The best individual is copied to the next generation unmodified. 
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has become trapped††† – the mutation probability is set to its high value so as to provide the 
search with new genetic material. As mentioned before, when used in conjunction with elitism 
it is guaranteed that the best solution is not destroyed by the high mutation probability. 
The mutation probability is reset back to its normal value when at least one of the following 
conditions is true: 

1. the average fitness increases enough to produce a sufficiently large delta sum; 

2. the maximum fitness increases; 

3. mutation has been set to its high value for at least n  generations. 
The n-generation limit is to ensure that the activation does not go on indefinitely (with the high 
mutation probability it is not very likely that the average fitness will increase enough to satisfy 
the first condition and maximum fitness may not increase as well). 
It has been observed that average fitness typically decreases when the criterion activates 
because the search process is to a large extent disrupted by the high mutation probability. 
However after the n-generation limit forces the mutation rate back to its normal value, average 
fitness tends to increase rapidly, thus usually moving away from the local extreme. 
 
Experimental Results 
 
Several experiments have been carried out (the specific settings are attached in Appendix 
Błąd! Nie moŜna odnaleźć źródła odwołania.) – Fig. 5 shows performance of the search 
algorithm with the AGA adaptive mechanism proposed in [10] with constants set according to 
recommendations. It also shows performance of the search algorithm without any adaptive 
mechanism and with the adaptive mechanism proposed in this paper. The maximum fitness 
value achieved is shown for each of the 5 runs displayed. 
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Fig. 7. Comparison of the AGA Adaptive Mechanism and AVSMR 

                                                      
††† This may also indicate convergence to the global maximum, it is, however, hardly 
possible to tell global and local maxima apart unless the algorithm is provided with additional 
problem-specific data. 
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As shown, search achieves suboptimal results when running with no adaptive mechanism. This 
can be ascribed to its inability to escape from local extremes. With no adaptive mechanism the 
search has not found the global optimum (fitness = 89) in any of the 5 runs. 
As expected, the AGA mechanism has caused further deterioration and its results are even 
worse than those produced in the previous case. 
The Value-switching adaptive mechanism proposed in this work improves the process of 
search – in 2 of the runs the global optimum is found, yet in certain cases not even the high 
mutation rate is guaranteed to help the search escape from the local maximum (runs 2, 3, 4). 
 
Further Suggestions 
 
It has been shown that the adaptive mechanism described in this work is able to effect 
considerable improvements and that it is able to some extent prevent getting trapped in local 
maxima. Further experiments should now be carried out in order to ascertain that the principle 
is valid for a wider range of tasks. 
It has also become apparent that even with the high mutation rates it is not always guaranteed 
that the search will indeed escape from the local maximum. Value-switching, or piecewise 
continuous relationships for other parameters could perhaps help to alleviate the problem – this 
issue requires further investigation. 
 
The Simple Flood Mechanism 
 
Seeing that the AVSMR mechanism described in the previous section is helpful in controlling 
the search process by helping it to escape from local extremes, yet not completely reliable and 
not always effective. To address these issues, we have developed another adaptive scheme 
supposed to provide even greater level of introducing new genetic material into the process. 
 
Simple Flood Mechanism 
 
The principle is very straight-forward – once a trapping is detected – a relatively small part of 
the population is selected – these individuals survive. The rest of the population is destroyed 
and replaced by newly generated individuals. This method is superior to AVSMR in that a 
large part of the population is guaranteed to be replaced and the newly generated individuals 
are generated in the same way that the initial population was. 
The trigger criterion has been modified for this task. The first requirement is that the criterion 
only activates for a single generation at a time as it would probably be useless and possibly 
even counterproductive to activate the flood mechanism for several successive generations. 

The new trigger criterion is still based on the average fitness 
if  (where i is the number of 

generation). The criterion stores average fitness 
if  for N  generations ( 1−N  previous 

generations and the current one; 7=N generations was used in the experiments). The 
mechanism cannot activate before the 

if  for at least N  generations has actually been 

collected. Once that is true, the mechanism activates if the following holds: 

( ) �
<ff i

Nj

j=i
i 1

2

−

−−

−∑ , (26) 
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where j  is the number of current generation and �  is an activation threshold. It is also 

possible to interpret the threshold as a relative parameter in which case we can rewrite the 
equation as follows: 

( ) �
<

f

ff

j

i

Nj

j=i
i 1

2

−

−−

−∑
. (27) 

All experiments were carried out using (21). 
It is also important to note that once the mechanism activates, the array storing the previous 
value of average fitness is cleared so it is guaranteed that the mechanism does not activate for 
the next N  generations. 
Although the approach seems straight-forward and similar in concept to AVSMR, experimental 
results point out an important issue. As obvious from Fig. 6, the results achieved by the Simple 
Flood Mechanism are significantly worse than those produced by the AVSMR – they are in 
fact worse than those produced by the system when using no adaptive mechanism. 
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Fig. 8. Comparison of AVSMR and the Simple Flood Mechanism 

 
The reason behind this is very simple – although we do introduce new genetic material into the 
process, the newly generated individuals will generally have very low fitness (usually 0, 3, or 4 
at most). Therefore if we apply fitness-proportionate selection to these in the next generation, 
almost every newly generated individual will be discarded. The survivors on the other hand 
will now dominate the population. This is especially true later in the evolutionary process when  
fitness score of the best individual will tend to be vastly greater than that of any randomly 
generated individual. At this point the next generation will be formed almost exclusively by the 
best individual, which will almost in every case aggravate the problem of getting trapped in a 
local extreme instead of solving it. 
 
Flood Mechanism with Low-pressure Scaling and the New-Blood Mechanism 
 
There are several ways to alleviate the problem that the Simple Flood Mechanism faces. The 
objective is – in any case – to create such scheme in which the newly generated individuals 
mate with the survivors so as to make use of their potentially useful code. 
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This paper proposes two different ways to achieve this: 
1. apply a fitness scaling function with low selection pressure to the GA for several 

generations following the flood – this mechanism will be referred to as Flood 
Mechanism with Low-pressure Scaling (FMLPS); 

2. once the mechanism activates create only such mating pairs in which at least one 
individual is newly generated – this mechanism will be referred to as the New Blood 
Mechanism. 
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Fig. 9. Comparison of the AVSMR, FMLPS the New Blood Mechanism 

 
The experimental results are shown in Fig. 7. FMLPS uses power scaling of 0.3 as the low-
pressure scaling. To make the comparison easier, the values are now ordered by fitness rather 
than by the number of run. This shows that AVSMR is still superior to FMLPS (although 
FMLPS is – in contrast to the Simple Flood Mechanism – significantly better than vanilla GP). 
The New Blood GA on the other hand is definitely superior to AVSMR – although it still gets 
trapped in local extremes, the maximum fitness values achieved are greater than those achieved 
by the AVSMR. 
The influence that some of the parameters such as the number of survivors, or the selection 
pressure applied by the low-pressure scaling have on the process of search should be subjected 
to a more systematic investigation. Combining the proposed adaptive mechanisms with some 
of the concepts introduced by the AGA mechanism could also prove useful – e.g. instead of 
decreasing the selection pressure using a scaling function the spread of the best individual's 
copies through the population immediately after the flood could be inhibited by techniques 
similar to those utilized in AGA. 
 
Conclusion 
 
It is well known that search processes based on genetic algorithms and genetic programming 
are prone to getting trapped in local maxima when exploring highly complex spaces. As shown 
in the paper, search process based on the standard genetic programming approach fails to find 
the global optimum when applied to the modified version of the artificial ant problem. 
This paper investigates the problem and proposes several adaptive mechanism, which should 
help the search process to escape from local extremes. As shown, the results are considerably 
better than those of the standard Genetic Programming approach. 
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Although the results are better, even the proposed algorithms cannot always guarantee that the 
process will indeed escape from every local maximum it encounters. This stems mainly from 
the high order of stochasticity that the algorithm is subject to as well as from the size of the 
searched space. 
Related techniques such as adaptive value-switching, or piecewise continuous relationships for 
other parameters of the search algorithm might provide further improvements. The influence 
that some of the flood mechanism related parameters (such as the number of survivors, or the 
selection pressure applied by the low-pressure scaling) have on the process of search may also 
provide an interesting area for further investigation. 
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[1] Selected Experimental Data 
 
Maximum number of generations: 150. 
Elitism:  3. 
Population size: 500. 
Maximum depth:  10. 
Tree generator used: GrownTreeGenerator. 
Functors used:  
 
 

1. VariableFunctor<NavAction>, 

2. ConstFactory<NavAction>(ACT_STAY, ACT_TURN_AROUND), 

3. ConstFactory<TileType>(tile_empty, tile_wall), 

4. CompareFunctor<NavAction>, 

5. CompareFunctor<TileType>, 

6. ConstFunctor<void>, 

7. NumericConstFactory<bool>(0, 1), 

8. IfAssign, 

9. Logic functors: And, Or, Not, 

10. PrgReturnFunctor(NavAction, 10).  
 
 

Formal parameters used: 

1. 3 x TileType (tile in front of the actor now and in past 2 turns). 

2. 3 x NavAction (previous outputs of the program). 
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Selection method: FitnessRoulette. 
1. No Adaptive Mechanism 
 
Crossover probability: 1.0. 
Mutation probability:  0.2. 
Results:  
 

# of run max. fitness achieved 

1 41 

2 27 

3 26 

4 46 

5 27 

 
2. The AGA Adaptive Mechanism 
 
Crossover probability: variable. 
Mutation probability:  variable. 
Additional information:  Uses the AGA mechanism with k1 = 1.0, k2 = 0.5, k3 = 1.0, k4 = 
0.5. 
Results: 
 

# of run max. fitness achieved 

1 14 

2 7 

3 14 

4 18 

5 3 

 
3. The AVSMR Adaptive Mechanism 
 
Fitness scaling: none. 
Crossover probability: 1.0. 
Mutation probability:  Basic mutation probability of 0.2; can be increased to 0.8 by the 
adaptive mechanism. 
Additional information:  Uses the AVSMR mechanism. 
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Results: 

# of run max. fitness achieved 

1 89 

2 26 

3 42 

4 47 

5 89 

 
4. The FMLPS Adaptive Mechanism 
 
Crossover probability: 1.0. 
Mutation probability:  0.2. 
Additional information:  Uses the FMLPS mechanism with 20 survivors, power scaling of 
0.3, 7=N ; 0.01=

� . 
Results: 
 

# of run max. fitness achieved 

1 89 

2 39 

3 63 

4 36 

5 46 

 
5. The New Blood Adaptive Mechanism 
 
Crossover probability: 1.0. 
Mutation probability:  0.2. 
Additional information:  Uses the New Blood mechanism with 20 survivors, 7=N ; 0.01=

�
. 

Results: 
 

# of run max. fitness achieved 

1 89 

2 48 

3 89 

4 45 

5 63 
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