Adaptive Approaches, Genetic Algorithms, GenetagPamming

Juraj SPALEK
Michal GREGOR

Adaptive Approaches to Parameter Control in Genetic
Algorithms and Genetic Programming

Abstract

The paper concerns the application of Genetic Atbors and Genetic
Programming to complex tasks such as automatedywlesi control systems,
where the space of solutions is non-trivial and ntaytain discontinuities.
Several adaptive mechanisms for control of the deatgorithm's parameters
are proposed, investigated and compared to eackrothis shown that the
proposed mechanisms are useful in preventing taelsdrom getting trapped in
local extremes of the fithess landscape.

Introduction

Genetic Algorithms represent a well-known optimiaatmethod recognized in particular for
its flexibility in representation of solutions. Gatit Programming applies the theory of Genetic
Algorithms to evolving computer programs, usuadipresented by syntactic trees.

There is a multitude of research papers that aiilmpsove convergence and robustness of both
algorithms. Some of these concentrate on paranoetetrol, that is to say on setting and
modifying various parameters of the search algorith

This paper proposes several adaptive mechanisnishwam to decrease the probability that
the search will become trapped in local maxima agous techniques. They are all based on
detecting that the search has become trapped bgrnabhg how average fitness of the
population changes in time.

Genetic Algorithms

Genetic algorithms represent one of the severapotetional techniques based on simulation
of evolution, a process based on the principleatfiral selectionthat is, on thaurvival of the
fittest The genetic algorithm operates on a populaticindif/iduals. The individuals represent
various solutions of a specific problem. The maiimgple of the algorithm is as shown in
figure 1.

* Prof. Ing. Juraj Spalek, PhD. — Department of ttairand Information Systems, Faculty
of Electrical Engineering, University of Zilina, i#erzitna 1, 010 26 Zilina, Slovak Republic,
juraj.spalek@fel.uniza.sk

** Bc. Michal Gregor — Department of Control anddmation Systems, Faculty of Electrical
Engineering, University of Zilina, Univerzitna 110 26 Zilina, Slovak Republic,
0.m.gregor@gmail.com

38

The first step is to generate the initial populatiothis typically involves generating a group of
random individuals. The next step is to performlegation of those individuals, which enables
the algorithm to compare the individuals to eacheptand, furthermore, to introduce the
survival of the fittest: the individuals with theedt scores (also known &fmessin the GA
terminology) are the most likelyto participate irreproduction that is, in forming the next
generation. This is analogous to the natural seleqirocess, in which the fitter individuals
have greater chance to survive and reproduce.

Stopping the evolution
in case the defined
conditions are met

Generation of
the initial -
population

Evaluation of

the individuals Selection

Reproduction

— Mutation — Crossover

Fig. 3. The general principle of genetic algorithms

Figure 1 also shows that the process of formingribet generation typically involves two
main genetic operators — crossover and mutatiortafitun represents a random modification
of the genetic code of a single individual.

In crossover, however, several (usually two) indiidls exchange parts of their genome.
Therefore, if we choose mostly the highly fit indivals for reproduction, crossover provides a
mechanism which may produce an offspring that coewmitheir good properties (and thus
achieves greater fitness that any of the parents).

The process of evolution runs iteratively until te@r conditions are met (like achieving a
predefined level of (maximum or average) fitness,r@aching the maximum number of
generations).

The individual phases will not be covered in defi@ite, see [1], [2], or [3]. However, the next
section will present some information concerninigess scaling as this concept will be utilized
in the following sections.

Fitness Scaling
There is a well known problem associated with ttreefs-proportionate selection methods. As

[3] says, when the evolution starts, the fithegsavae in population is usually high and a
small number of individuals are much fitter thaa tithers. Those individuals are consequently

** However, we usually refrain from directly choagithe besh individuals as that tends to
reduce diversity, which leads to premature convargend to getting trapped in a local
extreme.

Tt The latter is usually monitored in every implenation so as to prevent an infinite loop in
case the algorithm does not converge.

39

much more likely to be selected than any of themland so their offspring quickly multiplies,
which leads to premature convergence and non-optawsalts.

On the other hand, later in the search, when diViduals are very similar and the fitness
variance is therefore low, the evolution becomeeeexely slow as there are virtually no

fitness differences to explore.

To address these problems a fitness scaling functio be applied — that is, the original fitness
function f will be wrapped into a scaling functic f_:

f:F - F. (7)

The scaling function wraps the original fitnessdiion and the selection algorithm uses the
scaled values:

Scaledfitness= f (f(x)). (8)

where x[O1 represents an individual.
There are several widely used types of fithessragéiinctions — [4] lists 3 basic categories:

1. linear,
2. sigma truncation,
3. power law.

Linear Scaling

A fitness function with linear scaling then has tbkkowing definition [4]:
flinear(x): at b f (X)’ (9)

where f(x) is the raw fitness ana, b are user-defined constants — article [4] experisien
with a=maxf(x}} and b= -min{f(x)}/N, where N is the number of individuals. In [5]

author presents a way to derive relationships aprb, which provide linear scaling that
preserves the average fitness.

Sigma Truncation Scaling
For a fitness function with sigma truncation sagligource [6] provides the following
definition:

Y (10)

where, and,, are the mean fitness and the standard deviatrespectively — of fitness for
the current generation.

40

Power Law Scaling

Source [5] provides the following definition of fi#gss function scaled using the power law
scaling:

fpower(x): f (X)k ! (11)

where k is a problem-dependent exponent that may reqaiteetchanged during the run. [5]
also states that a value k= 1.005 has been successfully used in machine-vision egjins.

Boltzmann Scaling

There are also several special scaling methodh, asithe Boltzmann scaling [6], definition of
which is as follows:

exp(f (x)/T)

Fonanan()= mearexp(f (x)/T)] ’ (12)

where T represents @aemperatureparameter, which gradually reduces over time (veith
increasing number of generations).

Scaling the Fitness Function to Satisfy the Requireents

Certain selection methods also impose requirememtthe range of the fithess function, the
most obvious example being the fitness roulettecsiein, where fitness values must be greater
than or equal to zero (see (11)). The most appavantto achieve this is to use the following
scaling, which could be considered a special cAraar scaling:

f(x)= {f(x)—min{f(x)} min{f (x)}< 0

f(x) min{f (x)} 20 (13)

The minimum can be evaluated over the current géioar, or over the current ainlprevious
generations in which case the subtraction of theirnim is referred to aftness windowing

[7].
Adaptive Genetic Algorithms

In some applications based on the theory of geadgirithms, the optimization task may be so
difficult — with a complex space including a greatmber of local optima in which the search
process can be get trapped — that additional tqubei may be required to find the global
optimum. Genetic programming presented in the segtion does in a multitude of tasks serve
as an especially good example of the problem, avdlves computer programs and it is
obvious that two very similar computer programs megduce drastically different results and
thus the space of solutions is highly complex..

41

Among the approaches that aim to prevent gettiaygpied in a local optimum are the adaptive
schemes that observe various parameters of thetalgoor the search process itself and using
the observed values adapt some of the parameteesapproaches to parameter setting can
basically be divided into the following categor[8§ [9]:

4. static parameter control,

5. dynamic parameter control,

6. adaptive parameter control,

7. self-adaptive parameter control.

Static Parameter Control

The common feature of approaches falling into tagegory is that the setting they provide
remains constant for the entire duration of thelwianary process. There are many works
analysing the problem of finding optimum settings parameters like mutation probability and
crossover probability. Some of these are listedBin e.g. the work of Mihlenbeinm which
proposes the following formula for the mutation pability:

Pm= 1/L, (14)

where L is the length of the bit string.
Dynamic Parameter Control
As stated in [9] dynamic parameter approaches &jlyicprescribe a deterministically

decreasing schedule over a number of generatiodspaovides a formula for mutation
probability derived by Fogarty:

1 0.11375
Pult)= opc !

24C 2! (15)

wheret is the generation counter.
Papers [8] and [9] both refer to a more generatesgion derived by Hesser and Ménner:

ox F{ ,1t
\f L 2) (16)
wherea, g, yare constants] is the population size artlis the generation counter aL lis
again the length of the bit string.
Adaptive Parameter Control
Adaptive parameter control techniques monitor #eaeh process itself and provide feedback.

Some examples can be found in [10], which startk sisimple expression for the mutation
and crossover probabilities. Crossover probahiityxpressed as follows:

42

P = - (17)

wherek, is a constant anf__, f are the current generation maximum and averagesft

values respectively.
A similar formula is proposed for mutation probéiil

Pn= = (18)

whereg, is a constant.

It is further concluded in [10] that these expressio not depend on the fitness value of any
particular solution, which means that the crossavel mutation probabilities will be the same
for both — individuals with low and high fitnesslwas. Another version of these formulas is
derived that reflects these concerns [10]:

- fmax_ fl f'> f
pc - kl fmax_ .F
(19)
ks f<f
foo—f f>f
= |k, —max
pm 2 fmax_ f
(20)
K, f<f

where f is the fitness value of the individual to be meth! f is the larger of the fitness
values of the individuals to be crossed ik,dand k, are constants. It is required ttk tand

k, be less than 1.0 in order to constr p, and p_ to the range o(o,]>. Thep =k, f<f
and p =k, f<f expressions are to prevent crossover and mutgrobabilities from
exceeding 1.0 for suboptimal solutions.

Authors of [10] also observe th p, and P, are zero for the solution with maximum fitness
and thatp_=k, for f= f , while p_ =k, for f = f. For further details and for information

concerning setting the values of the constants tef¢10]. Some discussion concerning this
approach is also provided in section 0.

43

Self-adaptive Parameter Control

When using the self-adaptive parameter control@gugr, parameters such as mutation rate and
crossover probability of each individual are pafrtite genome and are evolved with it. As
stated in [9], the idea behind this is that a gpadameter value will provide an evolutionary
advantage to the individual. For further referesee [8] or [9].

Genetic Programming

Genetic programming (GP) is a technique introduded John Koza (seeGenetic
Programming: On the Programming of Computers by Meaf Natural Selectiofill]). It
utilizes the previously outlined concepts to evob@mputer programs. The main idea of
Genetic Programming revolves around the way in ithe individuals are represented, that is
to say around the syntactic trees (also known aseptaees). The problem will be analysed
more specifically in the following sections.

Representation

It is obvious, that simple text-based represematica programme is not especially suitable for
genetic algorithms as using a naive implementatifoarossover and mutation over the text-
based code would lead to syntactically incorreogpams.

The solution proposed by John Koza is to represgmbgram using a parse tree (see Fig. 2 and
3 for an instance), which is analogous to LISP Sressions [1]. The syntactic tree is a graph
with two types of nodes — non-terminals, which esent functions, and terminals, which
represent variables and constants.

Figures 2 and 3 show examples of such trees wih Fidisplaying a tree that codes the
expression x.y+Inx and Fig. 3 displaying a tree with more general maesms like

conditional execution, assignment and return.

Fig. 4. A simple example of a syntactic tree

The program in Fig. 3 shows one of the possiblesatayreturn values. The root node called
PRG (the name is taken over from [1], where a PRi&tbr is used to express that several
void-returning functors are called in a sequense) functor with an arbitrary number of inputs
of typevoid, while the last input is of a pre-set type, whislidentical to the return type of the
program. That way after all processing is done H®y void input subtrees, the result can be
collected using the last input and returned.

44

Fig. 5 A more complex parse tree

The program from figure 3 can be rewritten into fiblowing C++ code (Listing 1):

Listing 1 Code expressed by Fig. 3

1. if(x >y) ret = x;
2. elseret =vy;
3. return ret;

The representation proposed by Koza has one impopeoperty, known as thelosure
property, which requires that any valid tree generated feoset of terminals:

T= {tl,t2,""tn}’ (21)
and a set of non-terminals:

NT={t,t, ...t} (22)

represents a valid program, which states that amyterminal should be able to handle as an

argument any data type and value returned fromnaital of non-terminal [12].

In contrast to this approach, several researchessfon the so-callestrongly typedgenetic

programming [12], where nodes are allowed to have differerdoimpatible return and
argument types. In this case, type constraints hause enforced, which introduces several
fundamental differences. The most notable aspebhiswhen generating, crossing or mutating
a tree care has to be taken to ensure that thenrgtpe of the node used as an input is
compatible with the data type of the input itself.

The closure property can still be enforced in gjlpntyped genetic programming using

dynamic typing. Non-terminals can be built so ttrety accept an argument of any type, but

throw an exception if type id of the argument i a® expected.

45

The Artificial Ant Problem

The artificial ant problem described by John Kozdlil] is essentially a trail-following task.
The actor — an artificial ant — is supposed to gatd@ in an environment following an irregular
path consisting of pieces of food which it colledke ant has very limited sensing capabilities
— it only sees a single tile right in front of iohn Koza successfully solves the problem by
applying Genetic Programmifig

This constraint, although a reasonable one — wihynine-following agents this is in fact the
case — makes the task of navigating along a neialtpath rather difficult. It seems that even a
human is generally unable to navigate the ant ctyravhen only seeing a single tile in front
of the actor although this has not been testedwitl@ range of subjects.

Concerning the application of GP to the problemz&ases the following set of terminals
[11]:

T={MOVE, RIGHT, LEFT}, (23)
and the following non-terminals:
F={IF - FOOD- AHEAD, PROGN2, PROGN3. (24)

The meaning of most of these is straight-forwald®VE moves the actor forward by a single
step, RIGHT and LEFT turn the actor in the respectiirections. IF-FOOD-AHEAD is

a functor with two arguments — the first is thenthmart and is executed if there is a piece of
food in front of the actor, while the other is thise part. PROGN2 and PROGNS are functors
with 2 and 3 arguments respectively. PROGN reptesarsequence of steps to be executed
unconditionally, that is, PROGN2 and PROGN3 bothcexe each of its sub-trees.

I

Fig. 6. The Santa Fe trall

1t See [11] for detailed information about the Solu

46

The evaluation is based on simulation and the gitrie equal to the amount of food collected
by the actor. It would normally be necessary to sewmeral simulations for every individual to
make sure that the solution works in general artdonty on the single path on which it was
tested. To avoid this Koza uses a trail known as3anta Fe trdil (Fig. 4), which is presumed
to be sufficiently representative of the generail following problem [11].

Mode of Execution and Operators Used

It is also necessary to mention the mode of exesutsed by Koza — the program generated by
the evolutionary search is executed as fully asiptes and then re-executed [11]. Both [11]
and [1] limit the number of steps that a solutisrailowed to perform to 400 so as to prevent
running indefinitely for unfit individuals. The pafation size is set to 500 individuals and the
maximum number of generations to 50 for both [11d EL].

In our work we have set some additional requiresx@oincerning the form of the solution —
the evolved controller should, when executed, rethe action that the ant is to execute next
instead of calling functors that directly executie faiction and wait for its completion. The set
of terminals contains persistent variables andcthrgtroller has access to a pre-set number of
its previous inputs and outputs.

Controllers based on such mode of execution seebe tmuch more difficult to evolve than
those originally proposed by Koza. The search Ugagts trapped in a local maximum from
which it is often unable escape.

Let us provide the reader with some brief informaticoncerning the terminals and non-
terminals used in our work. The following comporsewere utilized:

1. VariableFunctor<NavAction>- a terminal that acts as a variable of type NaioAc
(NavAction is an enumerated type representing ttiemthat an actor can take like
stay, forward, turn around, turn left, turn right).

2. ConstFactory<NavAction>— a factory that creates constant terminals ofe typ
NavAction.

3. ConstFactory<TileType> a factory that creates constant terminals o e Type
(an enumerated type that represents various tyjp#@sin the map).

4. ConstFunctor<void>andNumericConstFactory<bool> auxiliary terminals of type
void and bool.

5. IfAssign— a non-terminal with 5 sub-nodes; the first isypfe bool and expresses the
condition. If the condition is true, value from sobde 3 is assigned to variable from
sub-node 2; if false value from sub-node 5 is asgigo variable from sub-node 4.
Values and variables are of type NavAction.

6. CompareFunctor<NavActionandCompareFunctor<TileType> non-terminals that
returns true if both of their inputs are equal &lde if not.

7. Logic functors:And, Or, Not.
8. PrgReturnFunctor(NavAction, N} a non-terminal used primarily as root functor of
the tree — it has N sub-nodes returning void arelsub-node (the last one) returning

NavAction. All sub-nodes are executed one by ortetha return value of the last one
is returned by the PrgReturnFunctor.

88 It contains single gaps, double gaps, singlebldoand triple gaps at corners [11], etc.

47

Adaptive Value-switching of Mutation Rate
Motivation

Most of the existing parameter setting mechanismgresented in the previous section, either
focus on setting GA-specific parameters such agtlenof the bit string (e.g. rule (8)), or are
not adaptive (e.g. (8), (9) and (10)). The AGA adepmechanism described in [10] (formulas
(13) and (14)) seems more fit to the task becauseplements certain form of convergence
detection based on comparison of the maximum arxtage fithess values. However this
approach does little to solve the problem of ggttimpped in a local optimum as the method
does not discern between local and global optima.

Furthermore — as mentioned hereinbefore — equafiBjsand (14) assign the best individual
zero crossover and mutation probabilities, whilsigring high probabilities to less fit
individuals. The reasoning behind this is thatldss fit individuals can safely be disrupted by
high mutation rates and recombined by crossovars(#mploying the solutions with sub-
average fitness to search the space [10]), whildnihhly fit individuals should be preserved.
However, such approach has a very obvious downsitieh the authors do not seem to
address — the highly fit individuals obviously caint the most excellent genetic material
available and by disallowing mutation and crossdeethese individuals the genetic code they
carry becomes isolated and is not used to geneeatesolutions.

Description of the AVSMR Mechanism

The idea that the most fit solutions should sungr@ssover and mutation unmodified is valid,
yet that feature can be enforced by using elifismKeeping that in mind we propose
a different adaptation scheme — called AVSMR (Ad&p¥alue-switching of Mutation Rate)

- in order to address the other issues. The maia isl that the mutation probability should be
increased to a high value when the search has leetapped in an extreme so as to provide
the search process with new genetic material sofnehich may previously have been
unavailable. To determine whether the search hasrbe trapped the adaptive mechanism
observes the change of average fitness in time.

To describe the solution in more detail — the athor works with 2 values of mutation
probability — the normal value and the high valtibe algorithm switches from the normal
value to the high value once the trigger crite@ativates.

The trigger criterion itself is based on a meashia¢ we will herein term delta sum

AS = 0.4S_ + - _f i1, (25)

where 45 is the delta sum in generatiirand f, is the average fitness in generatiand «

is the feedback coefficient (the experiments haentcarried out fca = 0.4).
If the delta sum is lower than a pre-set valueaf@redefined number of generations, that is to
say the increase of average fitness in the lastgenwerations is low, indicating that the search

** The best individual is copied to the next geaton unmodified.

48

has become trapp8d— the mutation probability is set to its high \@lso as to provide the
search with new genetic material. As mentioned fgefawhen used in conjunction with elitism
it is guaranteed that the best solution is notrdgetl by the high mutation probability.

The mutation probability is reset back to its normeue when at least one of the following
conditions is true:

1. the average fitness increases enough to produdificently large delta sum;
2. the maximum fitness increases;

3. mutation has been set to its high value for att|nagenerations.
Then-generation limit is to ensure that the activatifm®es not go on indefinitely (with the high
mutation probability it is not very likely that tteeserage fitness will increase enough to satisfy
the first condition and maximum fitness may notraase as well).
It has been observed that average fitness typiaidigreases when the criterion activates
because the search process is to a large extampwid by the high mutation probability.
However after tha-generation limit forces the mutation rate backsmormal value, average
fithess tends to increase rapidly, thus usuallyingpaway from the local extreme.

Experimental Results

Several experiments have been carried out (theifgpsettings are attached in Appendix

Btad! Nie mozna odnalez¢ zrodta odwotania) — Fig. 5 shows performance of the search
algorithm with the AGA adaptive mechanism proposefl0] with constants set according to

recommendations. It also shows performance of #dach algorithm without any adaptive

mechanism and with the adaptive mechanism proposéhis paper. The maximum fitness

value achieved is shown for each of the 5 runsiayspol.

100

S\ /

°
)
3 70
£ \ /
c 60
[} .
8 50 \ / * AGA mechanism
=] L P - T, * *No Adaptive
E 40 T x Py ~ Mechanism
g G ©. —AVSMR
X 20 . . .
= 0., . .

0

1 2 3 4 5
of run

Fig. 7. Comparison of the AGA Adaptive Mechanism ad AVSMR

t11+ This may also indicate convergence to the glolaximum, it is, however, hardly
possible to tell global and local maxima apart eslie algorithm is provided with additional
problem-specific data.

49

As shown, search achieves suboptimal results win@mimg with no adaptive mechanism. This
can be ascribed to its inability to escape fronal@xtremes. With no adaptive mechanism the
search has not found the global optimum (fitne88)in any of the 5 runs.

As expected, the AGA mechanism has caused furttteridration and its results are even
worse than those produced in the previous case.

The Value-switching adaptive mechanism proposdHtigwork improves the process of
search —in 2 of the runs the global optimum isifhwet in certain cases not even the high
mutation rate is guaranteed to help the searctpedoam the local maximum (runs 2, 3, 4).

Further Suggestions

It has been shown that the adaptive mechanismildeddn this work is able to effect
considerable improvements and that it is able toesextent prevent getting trapped in local
maxima. Further experiments should now be carrigdroorder to ascertain that the principle
is valid for a wider range of tasks.

It has also become apparent that even with the migfiation rates it is not always guaranteed
that the search will indeed escape from the loalimum. Value-switching, or piecewise
continuous relationships for other parameters cpalthaps help to alleviate the problem — this
issue requires further investigation.

The Simple Flood Mechanism

Seeing that the AVSMR mechanism described in tegipus section is helpful in controlling
the search process by helping it to escape froal kxtremes, yet not completely reliable and
not always effective. To address these issues,awe Heveloped another adaptive scheme
supposed to provide even greater level of intrattyciew genetic material into the process.

Simple Flood Mechanism

The principle is very straight-forward — once gping is detected — a relatively small part of
the population is selected — these individualsisarhe rest of the population is destroyed
and replaced by newly generated individuals. Theshwd is superior to AVSMR in that a
large part of the population is guaranteed to ptaced and the newly generated individuals
are generated in the same way that the initial [adiom was.

The trigger criterion has been modified for thisktal he first requirement is that the criterion
only activates for a single generation at a timg a®uld probably be useless and possibly
even counterproductive to activate the flood meidmrior several successive generations.

The new trigger criterion is still based on therage fitnes: f, (wherei is the number of
generation). The criterion stores average fitt f, s@r N generations N —1 previous

generations and the current o N = 7generations was used in the experiments). The
mechanism cannot activate before f, gor at leas N generations has actually been

collected. Once that is true, the mechanism aetsvéitthe following holds:

i=(N-2)

f-f.<e@ (26)

i=j

50

where j is the number of current generation ¢@1is an activation threshold. It is also

possible to interpret the threshold as a relatigeameter in which case we can rewrite the
equation as follows:

j-(N-2
i fi—l

—h|

(
Nt
=i <O
f.

J

(27)

All experiments were carried out using (21).

It is also important to note that once the mecharastivates, the array storing the previous
value of average fitness is cleared so it is guasghthat the mechanism does not activate for
the nextN generations.

Although the approach seems straight-forward amilai in concept to AVSMR, experimental
results point out an important issue. As obvioasnfFig. 6, the results achieved by the Simple
Flood Mechanism are significantly worse than thpsaduced by the AVSMR — they are in
fact worse than those produced by the system whieig mo adaptive mechanism.

100
90

e
% 80 \ /
= 70
Ny
3@ 60 \ /
[92]
(%] 50 .
o L \ — g * Simple Flood
E 40 R - Mechanism
E 30 R AVSMR
E 2 :
3
S 10

0

1 2 3 4 5
ofrun

Fig. 8. Comparison of AVSMR and the Simple Flood Mehanism

The reason behind this is very simple — althougldwéntroduce new genetic material into the
process, the newly generated individuals will gattgthave very low fitness (usually 0, 3, or 4
at most). Therefore if we apply fitness-proportinaelection to these in the next generation,
almost every newly generated individual will becdisied. The survivors on the other hand
will now dominate the population. This is espegiatlie later in the evolutionary process when
fitness score of the best individual will tend te Bastly greater than that of any randomly
generated individual. At this point the next getierawill be formed almost exclusively by the
best individual, which will almost in every casegegvate the problem of getting trapped in a
local extreme instead of solving it.

Flood Mechanism with Low-pressure Scaling and the &lw-Blood Mechanism
There are several ways to alleviate the problerhttie Simple Flood Mechanism faces. The
objective is — in any case — to create such schamehich the newly generated individuals

mate with the survivors so as to make use of fhatientially useful code.

51

This paper proposes two different ways to achibise t
1. apply a fitness scaling function with low selectipressure to the GA for several
generations following the flood — this mechanismll vie referred to ad-lood
Mechanism with Low-pressure Scaling (FMLPS)
2. once the mechanism activates create only such ghatirs in which at least one
individual is newly generated — this mechanism Wél referred to as tHéew Blood
Mechanism

100

W0 — —,

B 80 o .
<v hd \ .
= 70 v .
o A
T 60 o \
[9]
8 50 Se 3 . — AVSMR
c - - o
E 40 '~..__ = FMLPS
E 3o ~ * New Blood GA
£
5 20
S 10

0

1 2 3 4 5

ofrun

Fig. 9. Comparison of the AVSMR, FMLPS the New Blod Mechanism

The experimental results are shown in Fig. 7. FMILB8s power scaling of 0.3 as the low-
pressure scaling. To make the comparison easeeijalues are now ordered by fitness rather
than by the number of run. This shows that AVSMRstidl superior to FMLPS (although
FMLPS is — in contrast to the Simple Flood Mechamissignificantly better than vanilla GP).
The New Blood GA on the other hand is definitelpestior to AVSMR — although it still gets
trapped in local extremes, the maximum fitnesseskchieved are greater than those achieved
by the AVSMR.

The influence that some of the parameters suclhe@snumber of survivors, or the selection
pressure applied by the low-pressure scaling havh® process of search should be subjected
to a more systematic investigation. Combining theppsed adaptive mechanisms with some
of the concepts introduced by the AGA mechanismccaiso prove useful — e.g. instead of
decreasing the selection pressure using a scalinctibn the spread of the best individual's
copies through the population immediately after floed could be inhibited by techniques
similar to those utilized in AGA.

Conclusion

It is well known that search processes based ortigealgorithms and genetic programming
are prone to getting trapped in local maxima whepiaing highly complex spaces. As shown
in the paper, search process based on the stagdaetic programming approach fails to find
the global optimum when applied to the modifiedsi@n of the artificial ant problem.

This paper investigates the problem and proposesraeadaptive mechanism, which should
help the search process to escape from local egre&s shown, the results are considerably
better than those of the standard Genetic Programapproach.

52

Although the results are better, even the propasgarithms cannot always guarantee that the
process will indeed escape from every local maxiniuencounters. This stems mainly from
the high order of stochasticity that the algoritfersubject to as well as from the size of the
searched space.

Related techniques such as adaptive value-switcbingiecewise continuous relationships for
other parameters of the search algorithm mightideofurther improvements. The influence
that some of the flood mechanism related paramésech as the number of survivors, or the
selection pressure applied by the low-pressureng)ahave on the process of search may also
provide an interesting area for further investigati

REFERENCES
1. HYNEK, J.:Genetické algoritmy a genetické programovdriada Publishing, a. s.
Praha, 2008. ISBN 978-80-7300-218-3 [In Czech.]

2. ALBA, E., COTTA, C.:Evolutionary Algorithms2004.

http://www.lcc.uma.es/%7Eccottap/papers/eas.pdf

3. MITCHELL, M.: An Introduction to Genetic Algorithm# Bradford Book The MIT
Press. Cambridge, Massachusetts, 1999. ISBN 0-33161+4

4. SADJADI, F. A.:Comparison of fitness scaling functions in genalgmorithms with
applications to optical processin@ptical Information Systems Il, Proceedings of
SPIE: Vol. 5557, 2004.

5. BANERJEE, A.:Fitness Scaling[quot. 11-20-2010].

http://www.cse.unr.edu/~banerjee/scaling.htm

6. LAROSE, D. T..Data Mining Methods and Model3ohn Wiley & Sons. New Jersey,
2006. ISBN 978-04-7166-656-1

7. BUSETTI, F.:Genetic algorithms overviev2001.
http://www.vit.ac.infacademicresearch/res701/RESROUP%5CEvolutionary%20A
Igorithms%5Cgaweb.pdf

8. EIBEN, A. E., ROBERT, H., MICHALEWICZ, Z.Parameter Control in
Evolutionary AlgorithmslEEE Transactions of Evolutionary Computation1899.
http://www.gpa.etsmtl.ca/cours/sys843/pdf/Eiben1p@b

9. THIERENS, D.:Adaptive mutation rate control schemes in gendtorithms
Proceedings of the 2002 IEEE World Congress on QGoatipnal Intelligence:

Congress on Evolutionary Computation, 2002.

53

http://dynamics.org/~altenber/UH_ICS/EC_REFS/GP_8EEC/2002/GP_WCCI_
2002/7315.PDF

10.SRINIVAS, M., PATNAIK, L. M.: Adaptive Probabilities of Crossover and Mutation
in Genetic AlgorithmslEEE Transactions on Systems, Man and Cybernéti;s
1994. http://eprints.iisc.ernet.in/archive/000086@2/adaptive.pdf

11.KOZA, J. R.:Genetic Programming: On the Programming of Comptsr Means of
Natural SelectionThe MIT Press. Cambridge, Massachusetts, 198N I&262-
11170-5

12.MONTANA, D. J.: Strongly Typed Genetic Programmirigyolutionary Computation:
3, 1995. http://vishnu.bbn.com/papers/stgp.pdf

[1] Selected Experimental Data

Maximum number of generations: 150.
Elitism: 3.

Population size:500.

Maximum depth: 10.

Tree generator used:GrownTreeGenerator.
Functors used:

VariableFunctor<NavAction>,
ConstFactory<NavAction>(ACT_STAY, ACT_TURN_AROUND),
ConstFactory<TileType>(tile_empty, tile_wall),
CompareFunctor<NavAction>,

CompareFunctor<TileType>,

ConstFunctor<void>,

NumericConstFactory<bool>(0, 1),

IfAssign,

. Logic functors: And, Or, Not,

10.PrgReturnFunctor(NavAction, 10).

© e N R~hPE

Formal parameters used:
1. 3 x TileType (tile in front of the actor now andpast 2 turns).
2. 3 x NavAction (previous outputs of the program).

54

Selection method:FitnessRoulette.
1. No Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.

Results:
of run max. fithess achieved
1 41
2 27
3 26
4 46
5 27

2. The AGA Adaptive Mechanism

Crossover probability: variable.
Mutation probability: variable.
Additional information: Uses the AGA mechanism with k1 = 1.0, k2 = 0.57kB0, k4 =

0.5.

Results:
of run max. fithess achieved
1 14
2 7
3 14
4 18
5 3

3. The AVSMR Adaptive Mechanism

Fitness scaling:none.

Crossover probability: 1.0.

Mutation probability: Basic mutation probability of 0.2; can be increhse0.8 by the
adaptive mechanism.

Additional information: Uses the AVSMR mechanism.

Results:

of run max. fitness achieved
1 89
2 26
3 42
4 47
5 89

4. The FMLPS Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Additional information: Uses the FMLPS mechanism with 20 survivors, paeeting of

0.3,N=7; @=0.0L

Results:
of run max. fithess achieved
1 89
2 39
3 63
4 36
5 46

5. The New Blood Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Additional information: Uses the New Blood mechanism with 20 survivN=7; ®= 0.01

Results:

of run max. fitness achieved
1 89
2 48
3 89
4 45
5 63

56

	Adaptive Approaches to Parameter Control in Genetic Algorithms and Genetic Programming

