
 38

Adaptive Approaches, Genetic Algorithms, Genetic Programming

Juraj SPALEK*
Michal GREGOR**

Adaptive Approaches to Parameter Control in Genetic
Algorithms and Genetic Programming

Abstract

The paper concerns the application of Genetic Algorithms and Genetic
Programming to complex tasks such as automated design of control systems,
where the space of solutions is non-trivial and may contain discontinuities.
Several adaptive mechanisms for control of the search algorithm's parameters
are proposed, investigated and compared to each other. It is shown that the
proposed mechanisms are useful in preventing the search from getting trapped in
local extremes of the fitness landscape.

Introduction

Genetic Algorithms represent a well-known optimization method recognized in particular for
its flexibility in representation of solutions. Genetic Programming applies the theory of Genetic
Algorithms to evolving computer programs, usually represented by syntactic trees.
There is a multitude of research papers that aim to improve convergence and robustness of both
algorithms. Some of these concentrate on parameter control, that is to say on setting and
modifying various parameters of the search algorithm.
This paper proposes several adaptive mechanisms, which aim to decrease the probability that
the search will become trapped in local maxima by various techniques. They are all based on
detecting that the search has become trapped by observing how average fitness of the
population changes in time.

Genetic Algorithms

Genetic algorithms represent one of the several computational techniques based on simulation
of evolution, a process based on the principle of natural selection, that is, on the survival of the
fittest. The genetic algorithm operates on a population of individuals. The individuals represent
various solutions of a specific problem. The main principle of the algorithm is as shown in
figure 1.

* Prof. Ing. Juraj Spalek, PhD. – Department of Control and Information Systems, Faculty
of Electrical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,
juraj.spalek@fel.uniza.sk
** Bc. Michal Gregor – Department of Control and Information Systems, Faculty of Electrical
Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovak Republic,
o.m.gregor@gmail.com

 39

The first step is to generate the initial population – this typically involves generating a group of
random individuals. The next step is to perform evaluation of those individuals, which enables
the algorithm to compare the individuals to each other and, furthermore, to introduce the
survival of the fittest: the individuals with the best scores (also known as fitness in the GA
terminology) are the most likely** to participate in reproduction, that is, in forming the next
generation. This is analogous to the natural selection process, in which the fitter individuals
have greater chance to survive and reproduce.

Generation of
the initial

population

Evaluation of
the individuals Selection

Reproduction

Stopping the evolution
in case the defined
conditions are met

CrossoverMutation

Fig. 3. The general principle of genetic algorithms

Figure 1 also shows that the process of forming the next generation typically involves two
main genetic operators – crossover and mutation. Mutation represents a random modification
of the genetic code of a single individual.
In crossover, however, several (usually two) individuals exchange parts of their genome.
Therefore, if we choose mostly the highly fit individuals for reproduction, crossover provides a
mechanism which may produce an offspring that combines their good properties (and thus
achieves greater fitness that any of the parents).
The process of evolution runs iteratively until certain conditions are met (like achieving a
predefined level of (maximum or average) fitness, or reaching the maximum number of
generations††).
The individual phases will not be covered in detail here, see [1], [2], or [3]. However, the next
section will present some information concerning fitness scaling as this concept will be utilized
in the following sections.

Fitness Scaling

There is a well known problem associated with the fitness-proportionate selection methods. As
[3] says, when the evolution starts, the fitness variance in population is usually high and a
small number of individuals are much fitter than the others. Those individuals are consequently

** However, we usually refrain from directly choosing the best n individuals as that tends to
reduce diversity, which leads to premature convergence and to getting trapped in a local
extreme.
†† The latter is usually monitored in every implementation so as to prevent an infinite loop in
case the algorithm does not converge.

 40

much more likely to be selected than any of the others and so their offspring quickly multiplies,
which leads to premature convergence and non-optimal results.
On the other hand, later in the search, when all individuals are very similar and the fitness
variance is therefore low, the evolution becomes extremely slow as there are virtually no
fitness differences to explore.
To address these problems a fitness scaling function can be applied – that is, the original fitness
function f will be wrapped into a scaling function

sf :

FFf s →: . (7)

The scaling function wraps the original fitness function and the selection algorithm uses the
scaled values:

()()xff=fitness Scaled s
, (8)

where Ix∈ represents an individual.
There are several widely used types of fitness scaling functions – [4] lists 3 basic categories:

1. linear,

2. sigma truncation,

3. power law.

Linear Scaling

A fitness function with linear scaling then has the following definition [4]:

() ()xfb+a=xf linear . , (9)

where ()xf is the raw fitness and a , b are user-defined constants – article [4] experiments

with (){ }xfmax=a and (){ } Nxfmin=b /− , where N is the number of individuals. In [5]

author presents a way to derive relationships for a , b , which provide linear scaling that
preserves the average fitness.

Sigma Truncation Scaling

For a fitness function with sigma truncation scaling, source [6] provides the following
definition:

() ()
f

f
sigma � �xf

+=xf
−

1 ,
(10)

where
f

� and
f

� are the mean fitness and the standard deviation – respectively – of fitness for

the current generation.

 41

Power Law Scaling

Source [5] provides the following definition of fitness function scaled using the power law
scaling:

() ()k
power xf=xf , (11)

where k is a problem-dependent exponent that may require to be changed during the run. [5]
also states that a value of 1.005=k has been successfully used in machine-vision applications.

Boltzmann Scaling

There are also several special scaling methods, such as the Boltzmann scaling [6], definition of
which is as follows:

() ()()
()()[]Txfmean

Txf
=xfBoltzmann /exp

/exp , (12)

where T represents a temperature parameter, which gradually reduces over time (with an
increasing number of generations).

Scaling the Fitness Function to Satisfy the Requirements

Certain selection methods also impose requirements on the range of the fitness function, the
most obvious example being the fitness roulette selection, where fitness values must be greater
than or equal to zero (see (11)). The most apparent way to achieve this is to use the following
scaling, which could be considered a special case of linear scaling:

() () (){ } (){ }
() (){ }





≥

−

0

0

xfminxf

<xfminxfminxf=xfs

(13)

The minimum can be evaluated over the current generation, or over the current and n previous
generations in which case the subtraction of the minimum is referred to as fitness windowing
[7].

Adaptive Genetic Algorithms

In some applications based on the theory of genetic algorithms, the optimization task may be so
difficult – with a complex space including a great number of local optima in which the search
process can be get trapped – that additional techniques may be required to find the global
optimum. Genetic programming presented in the next section does in a multitude of tasks serve
as an especially good example of the problem, as it evolves computer programs and it is
obvious that two very similar computer programs may produce drastically different results and
thus the space of solutions is highly complex..

 42

Among the approaches that aim to prevent getting trapped in a local optimum are the adaptive
schemes that observe various parameters of the algorithm or the search process itself and using
the observed values adapt some of the parameters. The approaches to parameter setting can
basically be divided into the following categories [8], [9]:

4. static parameter control,

5. dynamic parameter control,

6. adaptive parameter control,

7. self-adaptive parameter control.

Static Parameter Control

The common feature of approaches falling into this category is that the setting they provide
remains constant for the entire duration of the evolutionary process. There are many works
analysing the problem of finding optimum settings for parameters like mutation probability and
crossover probability. Some of these are listed in [8], e.g. the work of Mühlenbeinm which
proposes the following formula for the mutation probability:

L=pm /1 , (14)

where L is the length of the bit string.

Dynamic Parameter Control

As stated in [9] dynamic parameter approaches typically prescribe a deterministically
decreasing schedule over a number of generations and provides a formula for mutation
probability derived by Fogarty:

()
tm +=tp

2
0.11375

240
1 , (15)

where t is the generation counter.
Papers [8] and [9] both refer to a more general expression derived by Hesser and Männer:

()
L

� �
t��=tpm








 −

× 2
exp

, (16)

where � , � , � are constants, � is the population size and t is the generation counter and L is

again the length of the bit string.

Adaptive Parameter Control

Adaptive parameter control techniques monitor the search process itself and provide feedback.
Some examples can be found in [10], which starts with a simple expression for the mutation
and crossover probabilities. Crossover probability is expressed as follows:

 43

ff

k
=p

max
c −

1 , (17)

where
1k is a constant and

maxf , f are the current generation maximum and average fitness

values respectively.
A similar formula is proposed for mutation probability:

ff

k
=p

max
m −

2 , (18)

where
2k is a constant.

It is further concluded in [10] that these expression do not depend on the fitness value of any
particular solution, which means that the crossover and mutation probabilities will be the same
for both – individuals with low and high fitness values. Another version of these formulas is
derived that reflects these concerns [10]:













≤

−
−

ff'k

f>f'
ff

f'f
k=p

max

max
c

3

1

(19)













≤

−
−

ffk

f>f
ff

ff
k=p

max

max
m

4

2

(20)

where f is the fitness value of the individual to be mutated, f' is the larger of the fitness

values of the individuals to be crossed and
3k and 4k are constants. It is required that

1k and

2k be less than 1.0 in order to constrain cp and
mp to the range of 0,1 . The ff'k=pc ≤3

and ffk=pm ≤4
 expressions are to prevent crossover and mutation probabilities from

exceeding 1.0 for suboptimal solutions.

Authors of [10] also observe that cp and mp are zero for the solution with maximum fitness

and that 1k=pc
 for f=f' , while 2k=pm for f=f . For further details and for information

concerning setting the values of the constants refer to [10]. Some discussion concerning this
approach is also provided in section 0.

 44

Self-adaptive Parameter Control

When using the self-adaptive parameter control approach, parameters such as mutation rate and
crossover probability of each individual are part of its genome and are evolved with it. As
stated in [9], the idea behind this is that a good parameter value will provide an evolutionary
advantage to the individual. For further reference see [8] or [9].

Genetic Programming

Genetic programming (GP) is a technique introduced by John Koza (see Genetic
Programming: On the Programming of Computers by Means of Natural Selection [11]). It
utilizes the previously outlined concepts to evolve computer programs. The main idea of
Genetic Programming revolves around the way in which the individuals are represented, that is
to say around the syntactic trees (also known as parse trees). The problem will be analysed
more specifically in the following sections.

Representation

It is obvious, that simple text-based representation of a programme is not especially suitable for
genetic algorithms as using a naïve implementation of crossover and mutation over the text-
based code would lead to syntactically incorrect programs.
The solution proposed by John Koza is to represent a program using a parse tree (see Fig. 2 and
3 for an instance), which is analogous to LISP S-expressions [1]. The syntactic tree is a graph
with two types of nodes – non-terminals, which represent functions, and terminals, which
represent variables and constants.
Figures 2 and 3 show examples of such trees with Fig. 2 displaying a tree that codes the
expression x+x.y ln and Fig. 3 displaying a tree with more general mechanisms like

conditional execution, assignment and return.

x y

* ln

x

+

Fig. 4. A simple example of a syntactic tree

The program in Fig. 3 shows one of the possible ways to return values. The root node called
PRG (the name is taken over from [1], where a PRG functor is used to express that several
void-returning functors are called in a sequence) is a functor with an arbitrary number of inputs
of type void, while the last input is of a pre-set type, which is identical to the return type of the
program. That way after all processing is done by the void input subtrees, the result can be
collected using the last input and returned.

 45

x y

> =

ret

IF

=

x

PRG

ret

ret y

Fig. 5 A more complex parse tree

The program from figure 3 can be rewritten into the following C++ code (Listing 1):

Listing 1 Code expressed by Fig. 3

1. if(x > y) ret = x;
2. else ret = y;
3. return ret;

The representation proposed by Koza has one important property, known as the closure
property, which requires that any valid tree generated from a set of terminals:

{ }nt,tt=T ...2,1,
, (21)

and a set of non-terminals:

{ }mt,tt=NT ...2,1,
, (22)

represents a valid program, which states that any non-terminal should be able to handle as an
argument any data type and value returned from a terminal of non-terminal [12].
In contrast to this approach, several researches focus on the so-called strongly typed genetic
programming [12], where nodes are allowed to have different incompatible return and
argument types. In this case, type constraints have to be enforced, which introduces several
fundamental differences. The most notable aspect is that when generating, crossing or mutating
a tree care has to be taken to ensure that the return type of the node used as an input is
compatible with the data type of the input itself.
The closure property can still be enforced in strongly typed genetic programming using
dynamic typing. Non-terminals can be built so that they accept an argument of any type, but
throw an exception if type id of the argument is not as expected.

 46

The Artificial Ant Problem

The artificial ant problem described by John Koza in [11] is essentially a trail-following task.
The actor – an artificial ant – is supposed to navigate in an environment following an irregular
path consisting of pieces of food which it collects. The ant has very limited sensing capabilities
– it only sees a single tile right in front of it. John Koza successfully solves the problem by
applying Genetic Programming‡‡.
This constraint, although a reasonable one – with many line-following agents this is in fact the
case – makes the task of navigating along a non-trivial path rather difficult. It seems that even a
human is generally unable to navigate the ant correctly when only seeing a single tile in front
of the actor although this has not been tested on a wide range of subjects.
Concerning the application of GP to the problem, Koza uses the following set of terminals
[11]:

{ }LEFTRIGHT,MOVE,=T , (23)

and the following non-terminals:

{ }PROGN3PROGN2,AHEAD,-FOOD-IF=F . (24)

The meaning of most of these is straight-forward – MOVE moves the actor forward by a single
step, RIGHT and LEFT turn the actor in the respective directions. IF-FOOD-AHEAD is
a functor with two arguments – the first is the then part and is executed if there is a piece of
food in front of the actor, while the other is the else part. PROGN2 and PROGN3 are functors
with 2 and 3 arguments respectively. PROGN represents a sequence of steps to be executed
unconditionally, that is, PROGN2 and PROGN3 both execute each of its sub-trees.

Fig. 6. The Santa Fe trail

‡‡ See [11] for detailed information about the solution.

 47

The evaluation is based on simulation and the fitness is equal to the amount of food collected
by the actor. It would normally be necessary to run several simulations for every individual to
make sure that the solution works in general and not only on the single path on which it was
tested. To avoid this Koza uses a trail known as the Santa Fe trail§§ (Fig. 4), which is presumed
to be sufficiently representative of the general trail following problem [11].

Mode of Execution and Operators Used

It is also necessary to mention the mode of execution used by Koza – the program generated by
the evolutionary search is executed as fully as possible and then re-executed [11]. Both [11]
and [1] limit the number of steps that a solution is allowed to perform to 400 so as to prevent
running indefinitely for unfit individuals. The population size is set to 500 individuals and the
maximum number of generations to 50 for both [11] and [1].
In our work we have set some additional requirements concerning the form of the solution –
the evolved controller should, when executed, return the action that the ant is to execute next
instead of calling functors that directly execute the action and wait for its completion. The set
of terminals contains persistent variables and the controller has access to a pre-set number of
its previous inputs and outputs.
Controllers based on such mode of execution seem to be much more difficult to evolve than
those originally proposed by Koza. The search usually gets trapped in a local maximum from
which it is often unable escape.
Let us provide the reader with some brief information concerning the terminals and non-
terminals used in our work. The following components were utilized:

1. VariableFunctor<NavAction> – a terminal that acts as a variable of type NavAction
(NavAction is an enumerated type representing the action that an actor can take like
stay, forward, turn around, turn left, turn right).

2. ConstFactory<NavAction> – a factory that creates constant terminals of type
NavAction.

3. ConstFactory<TileType> – a factory that creates constant terminals of type TileType
(an enumerated type that represents various types of tiles in the map).

4. ConstFunctor<void> and NumericConstFactory<bool> – auxiliary terminals of type
void and bool.

5. IfAssign – a non-terminal with 5 sub-nodes; the first is of type bool and expresses the
condition. If the condition is true, value from sub-node 3 is assigned to variable from
sub-node 2; if false value from sub-node 5 is assigned to variable from sub-node 4.
Values and variables are of type NavAction.

6. CompareFunctor<NavAction> and CompareFunctor<TileType> – non-terminals that
returns true if both of their inputs are equal and false if not.

7. Logic functors: And, Or, Not.

8. PrgReturnFunctor(NavAction, N) – a non-terminal used primarily as root functor of
the tree – it has N sub-nodes returning void and one sub-node (the last one) returning
NavAction. All sub-nodes are executed one by one and the return value of the last one
is returned by the PrgReturnFunctor.

§§ It contains single gaps, double gaps, single, double and triple gaps at corners [11], etc.

 48

Adaptive Value-switching of Mutation Rate

Motivation

Most of the existing parameter setting mechanisms, as presented in the previous section, either
focus on setting GA-specific parameters such as length of the bit string (e.g. rule (8)), or are
not adaptive (e.g. (8), (9) and (10)). The AGA adaptive mechanism described in [10] (formulas
(13) and (14)) seems more fit to the task because it implements certain form of convergence
detection based on comparison of the maximum and average fitness values. However this
approach does little to solve the problem of getting trapped in a local optimum as the method
does not discern between local and global optima.
Furthermore – as mentioned hereinbefore – equations (13) and (14) assign the best individual
zero crossover and mutation probabilities, while assigning high probabilities to less fit
individuals. The reasoning behind this is that the less fit individuals can safely be disrupted by
high mutation rates and recombined by crossover (thus employing the solutions with sub-
average fitness to search the space [10]), while the highly fit individuals should be preserved.
However, such approach has a very obvious downside which the authors do not seem to
address – the highly fit individuals obviously contain the most excellent genetic material
available and by disallowing mutation and crossover for these individuals the genetic code they
carry becomes isolated and is not used to generate new solutions.

Description of the AVSMR Mechanism

The idea that the most fit solutions should survive crossover and mutation unmodified is valid,
yet that feature can be enforced by using elitism*** . Keeping that in mind we propose
a different adaptation scheme – called AVSMR (Adaptive Value-switching of Mutation Rate)
- in order to address the other issues. The main idea is that the mutation probability should be
increased to a high value when the search has become trapped in an extreme so as to provide
the search process with new genetic material some of which may previously have been
unavailable. To determine whether the search has become trapped the adaptive mechanism
observes the change of average fitness in time.
To describe the solution in more detail – the algorithm works with 2 values of mutation
probability – the normal value and the high value. The algorithm switches from the normal
value to the high value once the trigger criterion activates.
The trigger criterion itself is based on a measure that we will herein term a delta sum:

i

ii
ii

f

ff
+

�
S�=

�
S 1

1. −
−

− , (25)

where
i

�
S is the delta sum in generation i and

if is the average fitness in generation i and �

is the feedback coefficient (the experiments have been carried out for 0.4=�).
If the delta sum is lower than a pre-set value for a predefined number of generations, that is to
say the increase of average fitness in the last few generations is low, indicating that the search

*** The best individual is copied to the next generation unmodified.

 49

has become trapped††† – the mutation probability is set to its high value so as to provide the
search with new genetic material. As mentioned before, when used in conjunction with elitism
it is guaranteed that the best solution is not destroyed by the high mutation probability.
The mutation probability is reset back to its normal value when at least one of the following
conditions is true:

1. the average fitness increases enough to produce a sufficiently large delta sum;

2. the maximum fitness increases;

3. mutation has been set to its high value for at least n generations.
The n-generation limit is to ensure that the activation does not go on indefinitely (with the high
mutation probability it is not very likely that the average fitness will increase enough to satisfy
the first condition and maximum fitness may not increase as well).
It has been observed that average fitness typically decreases when the criterion activates
because the search process is to a large extent disrupted by the high mutation probability.
However after the n-generation limit forces the mutation rate back to its normal value, average
fitness tends to increase rapidly, thus usually moving away from the local extreme.

Experimental Results

Several experiments have been carried out (the specific settings are attached in Appendix
Błąd! Nie moŜna odnaleźć źródła odwołania.) – Fig. 5 shows performance of the search
algorithm with the AGA adaptive mechanism proposed in [10] with constants set according to
recommendations. It also shows performance of the search algorithm without any adaptive
mechanism and with the adaptive mechanism proposed in this paper. The maximum fitness
value achieved is shown for each of the 5 runs displayed.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

AGA mechanism
No Adaptive
Mechanism
AVSMR

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 7. Comparison of the AGA Adaptive Mechanism and AVSMR

††† This may also indicate convergence to the global maximum, it is, however, hardly
possible to tell global and local maxima apart unless the algorithm is provided with additional
problem-specific data.

 50

As shown, search achieves suboptimal results when running with no adaptive mechanism. This
can be ascribed to its inability to escape from local extremes. With no adaptive mechanism the
search has not found the global optimum (fitness = 89) in any of the 5 runs.
As expected, the AGA mechanism has caused further deterioration and its results are even
worse than those produced in the previous case.
The Value-switching adaptive mechanism proposed in this work improves the process of
search – in 2 of the runs the global optimum is found, yet in certain cases not even the high
mutation rate is guaranteed to help the search escape from the local maximum (runs 2, 3, 4).

Further Suggestions

It has been shown that the adaptive mechanism described in this work is able to effect
considerable improvements and that it is able to some extent prevent getting trapped in local
maxima. Further experiments should now be carried out in order to ascertain that the principle
is valid for a wider range of tasks.
It has also become apparent that even with the high mutation rates it is not always guaranteed
that the search will indeed escape from the local maximum. Value-switching, or piecewise
continuous relationships for other parameters could perhaps help to alleviate the problem – this
issue requires further investigation.

The Simple Flood Mechanism

Seeing that the AVSMR mechanism described in the previous section is helpful in controlling
the search process by helping it to escape from local extremes, yet not completely reliable and
not always effective. To address these issues, we have developed another adaptive scheme
supposed to provide even greater level of introducing new genetic material into the process.

Simple Flood Mechanism

The principle is very straight-forward – once a trapping is detected – a relatively small part of
the population is selected – these individuals survive. The rest of the population is destroyed
and replaced by newly generated individuals. This method is superior to AVSMR in that a
large part of the population is guaranteed to be replaced and the newly generated individuals
are generated in the same way that the initial population was.
The trigger criterion has been modified for this task. The first requirement is that the criterion
only activates for a single generation at a time as it would probably be useless and possibly
even counterproductive to activate the flood mechanism for several successive generations.

The new trigger criterion is still based on the average fitness
if (where i is the number of

generation). The criterion stores average fitness
if for N generations (1−N previous

generations and the current one; 7=N generations was used in the experiments). The
mechanism cannot activate before the

if for at least N generations has actually been

collected. Once that is true, the mechanism activates if the following holds:

() �
<ff i

Nj

j=i
i 1

2

−

−−

−∑ , (26)

 51

where j is the number of current generation and � is an activation threshold. It is also

possible to interpret the threshold as a relative parameter in which case we can rewrite the
equation as follows:

() �
<

f

ff

j

i

Nj

j=i
i 1

2

−

−−

−∑
. (27)

All experiments were carried out using (21).
It is also important to note that once the mechanism activates, the array storing the previous
value of average fitness is cleared so it is guaranteed that the mechanism does not activate for
the next N generations.
Although the approach seems straight-forward and similar in concept to AVSMR, experimental
results point out an important issue. As obvious from Fig. 6, the results achieved by the Simple
Flood Mechanism are significantly worse than those produced by the AVSMR – they are in
fact worse than those produced by the system when using no adaptive mechanism.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

Simple Flood
Mechanism
AVSMR

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 8. Comparison of AVSMR and the Simple Flood Mechanism

The reason behind this is very simple – although we do introduce new genetic material into the
process, the newly generated individuals will generally have very low fitness (usually 0, 3, or 4
at most). Therefore if we apply fitness-proportionate selection to these in the next generation,
almost every newly generated individual will be discarded. The survivors on the other hand
will now dominate the population. This is especially true later in the evolutionary process when
fitness score of the best individual will tend to be vastly greater than that of any randomly
generated individual. At this point the next generation will be formed almost exclusively by the
best individual, which will almost in every case aggravate the problem of getting trapped in a
local extreme instead of solving it.

Flood Mechanism with Low-pressure Scaling and the New-Blood Mechanism

There are several ways to alleviate the problem that the Simple Flood Mechanism faces. The
objective is – in any case – to create such scheme in which the newly generated individuals
mate with the survivors so as to make use of their potentially useful code.

 52

This paper proposes two different ways to achieve this:
1. apply a fitness scaling function with low selection pressure to the GA for several

generations following the flood – this mechanism will be referred to as Flood
Mechanism with Low-pressure Scaling (FMLPS);

2. once the mechanism activates create only such mating pairs in which at least one
individual is newly generated – this mechanism will be referred to as the New Blood
Mechanism.

1 2 3 4 5

0

10

20

30

40

50

60

70

80

90

100

AVSMR
FMLPS
New Blood GA

of run

M
a

xi
m

u
m

 fi
tn

e
ss

 a
ch

ie
ve

d

Fig. 9. Comparison of the AVSMR, FMLPS the New Blood Mechanism

The experimental results are shown in Fig. 7. FMLPS uses power scaling of 0.3 as the low-
pressure scaling. To make the comparison easier, the values are now ordered by fitness rather
than by the number of run. This shows that AVSMR is still superior to FMLPS (although
FMLPS is – in contrast to the Simple Flood Mechanism – significantly better than vanilla GP).
The New Blood GA on the other hand is definitely superior to AVSMR – although it still gets
trapped in local extremes, the maximum fitness values achieved are greater than those achieved
by the AVSMR.
The influence that some of the parameters such as the number of survivors, or the selection
pressure applied by the low-pressure scaling have on the process of search should be subjected
to a more systematic investigation. Combining the proposed adaptive mechanisms with some
of the concepts introduced by the AGA mechanism could also prove useful – e.g. instead of
decreasing the selection pressure using a scaling function the spread of the best individual's
copies through the population immediately after the flood could be inhibited by techniques
similar to those utilized in AGA.

Conclusion

It is well known that search processes based on genetic algorithms and genetic programming
are prone to getting trapped in local maxima when exploring highly complex spaces. As shown
in the paper, search process based on the standard genetic programming approach fails to find
the global optimum when applied to the modified version of the artificial ant problem.
This paper investigates the problem and proposes several adaptive mechanism, which should
help the search process to escape from local extremes. As shown, the results are considerably
better than those of the standard Genetic Programming approach.

 53

Although the results are better, even the proposed algorithms cannot always guarantee that the
process will indeed escape from every local maximum it encounters. This stems mainly from
the high order of stochasticity that the algorithm is subject to as well as from the size of the
searched space.
Related techniques such as adaptive value-switching, or piecewise continuous relationships for
other parameters of the search algorithm might provide further improvements. The influence
that some of the flood mechanism related parameters (such as the number of survivors, or the
selection pressure applied by the low-pressure scaling) have on the process of search may also
provide an interesting area for further investigation.

REFERENCES

1. HYNEK, J.: Genetické algoritmy a genetické programování. Grada Publishing, a. s.

Praha, 2008. ISBN 978-80-7300-218-3 [In Czech.]

2. ALBA, E., COTTA, C.: Evolutionary Algorithms. 2004.

http://www.lcc.uma.es/%7Eccottap/papers/eas.pdf

3. MITCHELL, M.: An Introduction to Genetic Algorithms. A Bradford Book The MIT

Press. Cambridge, Massachusetts, 1999. ISBN 0−262−13316−4

4. SADJADI, F. A.: Comparison of fitness scaling functions in genetic algorithms with

applications to optical processing. Optical Information Systems II, Proceedings of

SPIE: Vol. 5557, 2004.

5. BANERJEE, A.: Fitness Scaling. [quot. 11-20-2010].

http://www.cse.unr.edu/~banerjee/scaling.htm

6. LAROSE, D. T.: Data Mining Methods and Models. John Wiley & Sons. New Jersey,

2006. ISBN 978-04-7166-656-1

7. BUSETTI, F.: Genetic algorithms overview. 2001.

http://www.vit.ac.in/academicresearch/res701/RES701DUMP%5CEvolutionary%20A

lgorithms%5Cgaweb.pdf

8. EIBEN, Á. E., ROBERT, H., MICHALEWICZ, Z.: Parameter Control in

Evolutionary Algorithms. IEEE Transactions of Evolutionary Computation: 3, 1999.

http://www.gpa.etsmtl.ca/cours/sys843/pdf/Eiben1999.pdf

9. THIERENS, D.: Adaptive mutation rate control schemes in genetic algorithms.

Proceedings of the 2002 IEEE World Congress on Computational Intelligence:

Congress on Evolutionary Computation, 2002.

 54

http://dynamics.org/~altenber/UH_ICS/EC_REFS/GP_REFS/CEC/2002/GP_WCCI_

2002/7315.PDF

10. SRINIVAS, M., PATNAIK, L. M.: Adaptive Probabilities of Crossover and Mutation

in Genetic Algorithms. IEEE Transactions on Systems, Man and Cybernetics: 24,

1994. http://eprints.iisc.ernet.in/archive/00006971/02/adaptive.pdf

11. KOZA, J. R.: Genetic Programming: On the Programming of Computers by Means of

Natural Selection. The MIT Press. Cambridge, Massachusetts, 1998. ISBN 0-262-

11170-5

12. MONTANA, D. J.: Strongly Typed Genetic Programming. Evolutionary Computation:

3, 1995. http://vishnu.bbn.com/papers/stgp.pdf

[1] Selected Experimental Data

Maximum number of generations: 150.
Elitism: 3.
Population size: 500.
Maximum depth: 10.
Tree generator used: GrownTreeGenerator.
Functors used:

1. VariableFunctor<NavAction>,

2. ConstFactory<NavAction>(ACT_STAY, ACT_TURN_AROUND),

3. ConstFactory<TileType>(tile_empty, tile_wall),

4. CompareFunctor<NavAction>,

5. CompareFunctor<TileType>,

6. ConstFunctor<void>,

7. NumericConstFactory<bool>(0, 1),

8. IfAssign,

9. Logic functors: And, Or, Not,

10. PrgReturnFunctor(NavAction, 10).

Formal parameters used:

1. 3 x TileType (tile in front of the actor now and in past 2 turns).

2. 3 x NavAction (previous outputs of the program).

 55

Selection method: FitnessRoulette.
1. No Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Results:

of run max. fitness achieved

1 41

2 27

3 26

4 46

5 27

2. The AGA Adaptive Mechanism

Crossover probability: variable.
Mutation probability: variable.
Additional information: Uses the AGA mechanism with k1 = 1.0, k2 = 0.5, k3 = 1.0, k4 =
0.5.
Results:

of run max. fitness achieved

1 14

2 7

3 14

4 18

5 3

3. The AVSMR Adaptive Mechanism

Fitness scaling: none.
Crossover probability: 1.0.
Mutation probability: Basic mutation probability of 0.2; can be increased to 0.8 by the
adaptive mechanism.
Additional information: Uses the AVSMR mechanism.

 56

Results:

of run max. fitness achieved

1 89

2 26

3 42

4 47

5 89

4. The FMLPS Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Additional information: Uses the FMLPS mechanism with 20 survivors, power scaling of
0.3, 7=N ; 0.01=

� .
Results:

of run max. fitness achieved

1 89

2 39

3 63

4 36

5 46

5. The New Blood Adaptive Mechanism

Crossover probability: 1.0.
Mutation probability: 0.2.
Additional information: Uses the New Blood mechanism with 20 survivors, 7=N ; 0.01=

�
.

Results:

of run max. fitness achieved

1 89

2 48

3 89

4 45

5 63

	Adaptive Approaches to Parameter Control in Genetic Algorithms and Genetic Programming

